Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps
نویسندگان
چکیده
We recall three well-known theorems related to the simplest codimension-one bifurcations occurring in discrete time dynamical systems, such as the fold, flip and Neimark–Sacker bifurcations, and analyze these bifurcations in presence of certain degeneracy conditions, when the above mentioned theorems are not applied. The occurrence of such degenerate bifurcations is particularly important in piecewise smooth maps, for which it is not possible to specify in general the result of the bifurcation, as it strongly depends on the global properties of the map. In fact, the degenerate bifurcations mainly occur in piecewise smooth maps defined in some subspace of the phase space by a linear or linear-fractional function, although not necessarily only by such functions. We also discuss the relation between degenerate bifurcations and border-collision bifurcations.
منابع مشابه
Local and Global bifurcations in Three-Dimensional, Continuous, Piecewise Smooth Maps
In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence ...
متن کاملBorder collision bifurcations in two-dimensional piecewise smooth maps
Recent investigations on the bifurcations in switching circuits have shown that many atypical bifurcations can occur in piecewise smooth maps that cannot be classified among the generic cases like saddle-node, pitchfork, or Hopf bifurcations occurring in smooth maps. In this paper we first present experimental results to establish the need for the development of a theoretical framework and clas...
متن کاملBistability and Border-collision Bifurcations for a Family of Unimodal Piecewise Smooth Maps
This article deals with a two-parameter family of piecewise smooth unimodal maps with one break point. Using superstable cycles and their symbolic representation we describe the structure of the periodicity regions of the 2D bifurcation diagram. Particular attention is paid to the bistability regions corresponding to two coexisting attractors, and to the border-collision bifurca-
متن کاملBifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves
We study the structure of the 2D bifurcation diagram for a two-parameter family of piecewise smooth unimodal maps f with one break point. Analysing the parameters of the normal form for the border-collision bifurcation of an attracting n-cycle of the map f, we describe the possible kinds of dynamics associated with such a bifurcation. Emergence and role of border-collision bifurcation curves in...
متن کاملBifurcations in Two-dimensional Piecewise Smooth Maps | Theory and Applications in Switching Circuits
Recent investigations on the bifurcation behavior of power electronic dc-dc converters has revealed that most of the observed bifurcations do not belong to generic classes like saddle-node, period doubling or Hopf bifurcations. Since these systems yield piecewise smooth maps under stroboscopic sampling, a new class of bifurcations occur in such systems when a xed point crosses the \border" betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 20 شماره
صفحات -
تاریخ انتشار 2010